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ANEXPERIMENTALSTUDYOFTHE

PRESSUREANDHEAT-TRANSFERDISTRIBUTION

ONA 70o SWEEPSLABDELTAWINGIN

HYPERSONICFLOW

By Mitchel H. Bertram and Philip E. Everhart

SUMMARY

Results are presented for a study of the pressure and heat-transfer distri-
butions and force characteristics of slab delta wings of 70o sweepat Machnum-
bers of 6.8 and 9.6 in air and 18 in helium. The wings had cylindrical leading
edges and were tested with two different noses. Onewas sharp in plan view and
the other was a tangent sphere with the samediameter as the cylindrical leading
edge. Simple approaches to predicting the heat transfer are shownto be success-
ful if the flow pattern peculiar to the angle-of-attack range under consideration
is taken into account.

INTRODUCTION

At the present time_ very little is knownabout the problem of heat transfer
to highly swept wings and the aerodynamics of such a wing in the vicinity of the
wing apex for the wide angle-of-attack range of interest in glider and reentry
work. Muchof the data available are for sharp-leading-edge delta wings and
essentially flat-plate data applicable to high lift-drag gliders and in regions
not close to the leading edge. A systematic research program was started at
Langley Research Center to supply at least a portion of the needed information on
blunt delta wings. As part of this program to supply this information, several
slab delta wings have been studied in the Langley ll-inch hypersonic tunnel at
Machnumbersof 6.8 and 9.6 in air and at 18.4 in helium to obtain aerodynamic-
heating_ pressure-distribution_ static-stability_ and flow-visualization data.
A preliminary report on part of the results from this study was given in
reference i.



SYMBOLS

a

c

C r

Cp

%

Cw

CD

CL

Cm

d

h

J

k

L

L/D

M

NSt

NPr

P

q

r

speed of sound

mean aerodynamic chord (3.5 inches)

root chord

specific heat of air at constant pressure

specific heat of model skin material

coefficient in linear equation for viscosity (see eq. (i))

drag coefficient referred to planform area,
Drag

lift coefficient referred to planform area,
Lift

pitching-moment coefficient about 2/3 root chord,
Pitching moment

q Spc

diameter

aerodynamic heat-transfer coefficient

index number

thermal conductivity

distance along leading edge measured from apex of slab portion of wing

lift-drag ratio

Mach number

Stanton number, h/puCp

Prandtl number

static pressure

per unit area; dynamic pressure, p u2/2heat-flow rate

corner radius
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S C

S o

SO

Sp

t

T

Te

U

CL

7

rlr

e

radius

Reynolds number based on model thickness or nose diameter and free-
stream conditions

distance along wing surface normal to leading edge from geometric
stagnation point

surface distance along wing center line from geometric stagnation point

distance along wing surface normal to leading edge from midline of wing

distance along wing surface normal to leading edge from midline to
center line of wing

planform area

model skin thickness

model thickness

temperature

adiabatic wall temperature

velocity

angle of attack

ratio of specific heats of air

temperature recovery factor

planform ray angle from stagnation point of sphere with origin at

center of sphere nose

dynamic viscosity

p density

T time

A sweep angle

A' effective sweep angle

Subscripts:

2 static conditions just behind normal shock



m_Df

N

0

s

w

OO

local static conditions just outside boundary layer

maximum

normal to leading edge or windward surface

stagnation-point values

sphere

model skin

undisturbed free- stream conditions

APPARATUS AND TESTS

Tunnel and Nozzles

This investigation was conducted in the Langley ll-inch hypersonic tunnel_

a description of which may be found in reference 2. This blowdown facility has

the capability of operation at different Mach numbers by changing nozzles. In

the present tests 3 nozzles giving nominal Mach numbers of 6.8 and 9.6 with air

and 18.4 with helium were used with a few tests at a Maeh number of about Ii in

helium. The Mach number 6.8 air nozzle is a contoured two-dimensional nozzle

machined from Invar to minimize deflection of the nozzle throat due to thermal

gradients. The Mach number 9.6 air nozzle is a contoured three-dimensional

nozzle with square throat and test section. The Mach number 18 helium nozzle is

contoured and has a circular cross section. A description and calibration of

these nozzles may be found in references 3, 4, and 5.

Models

The wing chosen for this investigation consisted of a delta planform slab

having a 70o sweep and a cylindrical leading edge. Wings were constructed having

either a sharp prow or a blunt prow. The sharp prow was formed by the inter-

section of the elements of the cylindrical leading edge on the center line of the

wing. For the blunt prow the apex was a tangent sphere with the same diameter as

the cylindrical leading edge. The models are presented in figure i.

Two heat-transfer and two pressure models, a sharp and blunt prow of each,

were electroformed from nickel and had a skin thickness of approximately

0.030 inch and an overall thickness of 0.75 inch. The models were sting mounted

in the test section on a movable support strut which could be rotated through an

angle-of-attack range. Pressure and thermocouple locations for the models are

shown in figure l(a). The thermocouples on the heat-transfer models were No. 30

chromel-alumel wire (0.Ol0-inch diameter) fastened to the model by welding a

preformed bead into a hole drilled through the skin. The instrumentation is laid

out normal to the leading edge and on the slab they are also arranged on rays
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from the slab apex. Two main distance parameters are shown. One is labeled L/t

and is the distance in diameters along the leading edge measured from the apex of

the slab portion of the wing. (Note that the slab thickness is equal to the

leading-edge and nose diameters.) The other distance parameter utilized is the

distance along the wing surface normal to the leading edge also nondimension-

alized in terms of wing thickness so/t. Continuous records of the tunnel stag-

nation temperature and the model skin temperatures were obtained on 18-channel

recording galvanometers. Surface pressures were measured by means of the NASA

aneroid-type six-cell recording units described in reference 2. An accuracy of

approximately one-half of i percent of full-scale deflection can be obtained on

the low-pressure instruments through careful calibration and reading of the

records. For this investigation, pressure cells were chosen to give as near

full-scale deflection as possible for the measuring station.

The force-test models consisted of four wings constructed of stainless steel

having a thickness of 0.75 inch (7 thicknesses long) or 0.25 inch (21 thicknesses

long) with a sharp- and a blunt-prow model of each thickness. (See fig. l(b).)

Shown in figure l(b) is a photograph of the force models showing the half-cone

adapter used to fasten the 21-diameter-long models to the sting. A sketch of the

21-diameter models and sting mount is presented in figure l(c). These models had

the same span and chord as the heat-transfer models. The force-test models were

also used in the oil-flow and schlieren tests.

Range of Test Conditions

Heat-transfer and pressure measurements and surface flow data were obtained

at Mach numbers of 6.8 and 9.6 in air and at a Mach number of 18 in helium.

These models were tested for angles of attack from 0° to 45 ° in air and from 0°

to i0 ° in helium.

Lift_ drag_ and pitching-moment data were obtained at Mach numbers of 6.8

and 9.6 in air with a sting-mounted strain-gage balance. A circular metal shield

was used to protect the exposed portions of the balance behind the model. For

the M_ = 6.8 tests the angles of attack of the models were measured optically

by use of a light beam reflected from the model by a prism onto a calibrated

scale. This method gives the true angles of attack of the model regardless of

the deflection of the balance and sting under load. The angle-of-attack range

for the _ = 6.8 tests was from -2.5 ° to 45 ° and was obtained by using the

same movable support strut as used in the heat-transfer test. The _ = 9.6

data were obtained at angles of attack from -2.5 ° to 30° . At the higher angles

of attack the tunnel boundary layer separated because of the strong shock from

the models_ struck the models_ and invalidated the data. Because of the smaller

size of the M_ = 9.6 nozzle windows_ the prism method could not be used and the

angles of attack of the models were obtained from the schlieren photographs.

The stagnation temperature was maintained at an average value of 650 ° F at

M_ = 6.8 and 1,200 ° F at M_ = 9.6 by means of a variable-frequency, resistance-

tube heater to insure against liquefaction of the air. The M_ = 6.8 tests were

made at stagnation pressures of approximately i0 and 30 atmospheres and gave

Reynolds numbers based on model thickness (0.75 inch) of about 0.8 × 105 and



2.6 x 105. The stagnation pressures for the M_= 9.6 tests were approximately
25 and 45 atmospheres and gave Reynolds numbersof about 0.4 x 105 and 0.8 x 105.
The M = 18 tests were madeat a stagnation pressure and temperature of 1,600-
pound-per-square-inch gage and 60° F and yielded a Reynolds numberof about
5.1 x 105. For the heat-transfer tests the wall temperature averaged about
570° R.

Visual Test Techniques

Schlieren photographs were taken of the flow pattern for each run. Top view
schlieren photographs were obtained by using the force-test models. The schlieren
system used in these tests had a single-pass vertical Z-shape light path with a
horizontal knife edge. The light source for the schlieren photographs was a
mercury-vapor arc lamp having a flash duration of about 3 microseconds.

Surface flow studies were madeon the force-test models at Machnumbersof
6.8 and 9.6 in air and 18 in helium. Twooil-flow techniques were used. One
method consisted of completely coating the model with a mixture of oil and lamp-
black. The second method consisted of applying the mixture of oil and l_mpblack
to the model in a dot pattern.

Data Reduction

Heat-transfer coefficients were obtained from the temperature-time curves by
use of the following thin-skin heat-flow equation:

d%
= - : --+ qc

The finite time required for the proper flow conditions to be established

in the nozzle by the quick start technique (i to 2 seconds) was such that the

temperature rise of the skin was sufficient to require conduction corrections.

The required second derivative of surface temperature with surface distance

(normal to the leading edge of the slab portion of the wing) was evaluated by a

three-point finite-difference method. The resulting equation for conduction in

the skin material at a point n is:

_Rk i(Tn - Tn-2)sinJ(_)n_l + (Tn - Tn+2)sinJ(_)n+l
qc (_)2sinJ(_)

in which the intervals are equally spaced and Zks is the surface distance from

the end of one interval to the start of the next (n to n + i, for example).

The index exponent j is equal to 0 for the flat plate and cylinder and equal

to 1 for the sphere. Also R = d/2 for the sphere or cylinder and R = t/2

for the flat plate and the skin thickness tw and thermal conductivity kw

were assumed constant over the intervals. Since the preceding equation is



indeterminate at s = 0 for a sphere_ in this case the following form is used:

= twkw

qc, s=O R2(_)2 (Tn - Tn+2)

Nickel properties were obtained from references 6 and 7 and are fitted by the

following empirical equations:

kw = 70.4 - 0.03335Tw, Btu
hr-ft-oF

cw = 0.000058T w + 0.081, Btu
lb-OF

where Tw is in degrees Rankine. The earliest time at which the tunnel stagna-

tion temperature and pressure could be considered constant for each run was deter-

mined from the temperature traces. At this time_ the model skin temperature Tw

was read and dTw/dT determined from the slope of the temperature-time curve for

each thermocouple. Adiabatic-wall temperatures Te were calculated for each

station from the relation:

- i M_
T e= I + mr 2

TO i + __7- i_
2

Local Mach numbers MZ were determined from the measured pressures by taking

into account the entropy rise across the appropriate shock. For the sphere a

normal shock was used and for the cylindrical leading edge and slab a swept-

cylinder entropy rise was assumed. The recovery factor was calculated from the

square root of the T-prime Prandtl number by Monaghan's laminar T-prime method as

shown in reference 8. The variation of the adiabatic wall temperature with sur-

face pressure and distance is shown in figure 2 for Mach numbers of 6.8 and 9.6.

As indicated in figure 2(a), the adiabatic wall temperature ratios on a sphere

for M= = 6.8 and M_ = 9.6 were the same. In figure 2(b) the vertical line

on the leading-edge plot indicates the junction of the cylinder and slab. The

dashed lines to the right of this vertical line indicate the values of recovery-

temperature ratio that would have been obtained had the cylinder continued

beyond this junction.
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RESULTS AND DISCUSSION

Details of Flow in Leading Edge and Nose Region

Cylindrical leadin_ edge in air.- In order to assess the leading edge of the

delta wing under study the results were compared with those from cylinder studies

where attempts were made to obtain results valid for cylinders of infinite length.

Much of these available data for the pressure distribution on a cylinder in air

for various Mach numbers (refs. 9 to ll) are presented in figure 3. The data

indicate that the pressure parameter P/Pmax is a function only of position on

the cylinder for Mach numbers normal to the cylinder greater than about 3.5 at

least for s/d < _/4.

When the pressure distribution is fixedj then Lees theory (ref. 12) predicts

that the distribution of heat-transfer coefficient will also be independent of

the free-streamMach number. Lees theory was evaluated by both the approximate

solution which assumes the velocity distribution is linear at the slope evalu-

ated at the stagnation point and the integral method in which the actual velocity

and pressure distribution (fig. 3) are used. (See appendix for details on the

application of Lees theory.) These results are compared in figure 4 with some

results obtained in the Langley ll-inch hypersonic tunnel at M_ = 9.6 on an

unswept cylinder which formed the nose of a blunt slab. There is not a great

deal of difference between the two methods of evaluating Lees theory even though

the velocity distribution is decidedly nonlinear above values of s/d of 0.3 or

0.4. Lees theory for the heat-transfer distribution was used with a stagnation-

point value from Fay and Riddells theory (ref. 13) described in a following dis-

cussion. The agreement of theory with experiment is good 3 considering the uncer-
tainties in the data.

Consider now the leading edge of the delta wings of this investigation.

Figure 5 shows the variation of maximum Stanton number with angle of attack for

the cylindrical leading edge of the delta wings at M_ = 6.8 and M_ = 9.6.

These maximum Stanton numbers are actual leading-edge values chosen no matter

where the maximum occurred and therefore are somewhat conservative. These maxi-

mums were generally obtained close to the geometric stagnation point. The param-

eter L/t is the station along the leading edge measured from the apex of the

slab portion of the wing. (See fig. l(a).)

The data are compared with predicted values obtained from the Fay and

Riddell equation for heat transfer at the stagnation point of a blunt body which

in a perfect gas may be written in terms of Stanton number

i,(Nst, _ _d)0 = 0-94(2)J/2c_0"lNOr6 w P0< _--_T_I/2_\T0]l_l----{d(u/ao]\d(s/d))0
(i)

in which j = 0 for two-dlmensional flow and J = 1 for axially symmetric flow
and where

8



0 refers to conditions at stagnation point outside boundary layer

refers to conditions in free stream

_wT0

Cw = _oTw

Conditions with zero subscript were evaluated at the Mach number normal to

the leading edge where for a swept wing

MN = M_ cosA' (2)

in which the effective sweep angle A' is given by

cos(90 - A') = cos(90 - A)cos (3)

The Sibulkin equation for heat transfer to the blunt leading edge is (adapted

from ref. 14)

(N l_d ) 0" 763(0" 747) i-J VI_2 aO(cos A')l-j(d(u/a0) ) (4)
St,_ 0 = N 0.6 _ u2 \d(s/d) 0

Pr 2

where the 0.747 factor is obtained from reference 15 and

u a014 +
+ 2(_ - I)MN2

(5)

The values of the geometric stagnation-point velocity gradient used in equa-

tions (i) and (4) varied as follows with Mach number normal to the swept cylinder

(based on data contained in fig. 3).

MN

z.5
2.0

3.0
4.0

9.6

d(u/a°)/
d(s/t) /o

1.88

2.03
2.15
2.18
2.18
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In general, the Stanton numbers on the blunt-nose model at a Mach number of

6.8 (fig. 5(a)) are above the predicted values of Fay and Riddell. Similarly,

at a Mach number of 9.6 (fig. 5(b)), both the Fay and Riddell and the Sibulkin

equations underestimate the measured Stanton numbers on the blunt- and sharp-nose

models. However, at L/t = 5, cylinder theory shows fair agreement with the

measured Stanton numbers on the blunt-nose model at a Mach number of 9.6 up to

an angle of attack of about 30°. For angles of attack up to 20 ° the blunt-nose

data at M_ = 6.8 and M_ = 9.6 tend to follow the trend with angle of attack

predicted by the infinite cylinder theory but drop below the theory at the higher

angles of attack. The data at the L/t = 0 station, which may be considered as

a line on a sphere, did not depart from the theoretical trend at the higher

angles of attack. For the angle-of-attack range of the tests, the sharp-nose

data followed the trend predicted by cylinder theory. However, an examination of

the distribution of heat transfer about the leading edge of the sharp-nose wing

at an angle of attack of 30° to 35 ° (to be presented later) indicates the data

from the particular station are probably too high because of inadequate conduc-
tion corrections.

Schlieren studies have shown that at low angles of attack, the leading-edge

shock when viewed from the top is parallel to the leading edge away from the nose-

influenced region; however, at an angle of attack of 20 ° and higher, the shock is

inclined at an angle to the leading edge as is shown in a later section. (See

ref. 1.) With this change in the shock relationship to the leading edge is asso-

ciated a change in the flow pattern on the wing. These schlieren photographs and

flow studies are presented in detail in a later section.

Spherical nose in air.- Available data for the pressure distribution on a

sphere at various Mach numbers in air (refs. 14 and 16 to 20) are shown in fig-

ure 6(a) together with the results obtained on the sphere nose of the delta wing

of the present tests. One notes that, as for the cylinder results, the pressure

distribution is practically invariant with Mach number for Mach numbers greater

than 3.5 or 4. The delta-wing data which are averaged results over small inter-

vals for all the data obtained show good agreement with the previously published

sphere pressures.

These delta-wing data are given in more detail in figure 6(b) where it is

designated according to angle of attack, Reynolds number, and station without

averaging. The value of surface distances is obtained from the distance of an

orifice from the geometric stagnation point along a geodesic. Both ray angle

and angle of attack in the range shown apparently have no discernible effect.

The velocity distribution and the local Mach number of the averaged data

obtained at M_ = 9.6 on the spherical nose of the delta wing are shown in fig-

ure 6(c). On this same figure for purposes of comparison are shown the data

obtained on the unswept cylinder at M_ = 9.6 (see fig. 3) in the form of local

velocity. The lines in figure 6(c) represent a fairing of all the hypersonic

data in figures 3 and 6(a).

Figure 7(a) presents the Stanton number distribution on the spherical nose

of the delta wing in air. The measured Stanton numbers on the spherical section

are well predicted by Lees theory with the Fay and Riddell stagnation-point value.
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However, the scatter of the data is admittedly greater than is desirable probably
because the small diameter of the nose required the application of substantial
conduction corrections. As for the pressures presented previously, both ray
angle e and angle of attack in the range shownhad apparently no effect.

Again, as for the pressure, the data shownin figure 7(a) were averaged
over small intervals and these results are shownin figure 7(b). The present
data showreasonable agreement with the data obtained by Crawford and McCauley
(ref. 14) on the hemisphere nose of a cylinder model.

S_here and cylinderin helium.- Available data for the pressure distribution

on a sphere in helium flow (refs. 21 and 22) are shown in figure 8(a) together

with the results obtained on the sphere nose of the delta wing of the present

tests. There is general agreement between the various sources of data. Some of

the scatter in the shoulder region (s/d values around 0.78) can probably be

attributed to the Reynolds number effects on surface pressure shown in
reference i.

The velocity distribution and the local Mach number for these helium data

are presented in figure 8(b). For the velocity the lines shown on the figure are

the faired values of all the pressure results from figure 8(a). For the Mach

number the lines shown are the results obtained in air (fig. 6(c)). There are

apparently only relatively small differences in the local Mach numbers obtained

on these blunt shapes in air and helium.

Pressures and Heat Transfer Along Center Line of Wing

Pressures.- The center-line pressure distribution on the blunt-nose wing is

shown in figure 9. The data are shown over a range of angle of attack from 0o to

46 ° . The pressure parameter is P/P0 where PO is the stagnation pressure

after a normal shock. The distance parameter Sc/t is the distance along the

surface on the center line of the wing in terms of leading-edge diameters. The

origin of the surface distance is always taken at the geometric stagnation point

of the spherical nose. On the spherical nose there is a Mach number freeze,

that is, P/PO is a function only of position on the sphere and not of free-

stream Mach number as discussed earlier. On the slab portion of the high-

pressure side of the wing, the pressure gradient induced by the blunt nose_ which

is so pronounced at an angle of attack of 0°, becomes less severe with increasing

angle of attack and virtually disappears at an angle of attack of 20 ° and greater.

Heat transfer.- Figures 10(a) and 10(b) present the variation in heat-

transfer-coefficient ratio along the center line of the blunt-nose model at

M_ = 6.8 and _ = 9.6. Heat-transfer coefficients measured at points along the

center line, expressed as a fraction of the value calculated for the stagnation

point of a sphere, are plotted against surface distance along the wing center

line from the geometric stagnation point. The measured heat-transfer rates on

the sphere nose were presented in figure 7. The results at a Mach number of 6.8

and 9.6 are similar. On the slab, at an angle of attack of 0 °, oil flow showed

that the nose effect extended back over the entire length of this short model

ii



and, in addition, the cylindrical leading edge also has an effect which increases
the pressures over that for the infinitely thin wing of the samep!anform shape.
The heat-transfer coefficients in figures lO(a) and lO(b) are increased by the
nose-induced pressures and thus are underestimated by strip theory. However, at
M_ = 6.8, strip theory (_ = 0°) modified for pressure, pressure gradient, and
nose geometry (ref. 8) predicts the correct trend for the heat-transfer coeffi-
cients. As the angle of attack increases, the distance over which the induced
pressures due to the nose are significant decreases as was shownin figure 9,
and at an angle of attack of 21° the heat transfer on the windward surface of the
slab is satisfactorily predicted by the constant-pressure strip theory from about
2 diameters back from the stagnation point.

At higher angles of attack, the flow becomesoutward over the leading edge
and at an angle of attack of 42° , cross-flow theory gives a good prediction of
the center-llne heat-transfer rates. An exception to this good agreementwith
the cross-flow theory is evident in the data at the higher angles of attack and
values of Sc/t at Machnumber6.8. (See fig. lO(a).) This discrepancy between
theory and experiment is believed to be a result of transition of the boundary
layer to turbulent flow. This effect is also exhibited by unpublished results
shownin figure lO(c) obtained in the Langley Unitary Plan wind tunnel on a
spherical-nose wing tested at a higher Reynolds numberand lower Machnumbers
than in the present tests. The configuration was essentially the sameas the one
tested in the Langley ll-inch hypersonic tunnel except that this wing was i inch
thick and 20 wing thicknesses long instead of 7.

The cross-flow theory is determined from an adaption of the Fay and Riddell
relation for laminar stagnation-point heating. (See eq. (i).) In this case, the
componentof the free-stream flow normal to the windward surface of the wing is
assumedto be the only one that contributes to the aerodynamic heating. With
this assumption, the laminar cross-flow stagnation-point heating as a ratio to
the laminar stagnation-point heating on a sphere is as follows for a slab wing
with rounded edges where the edge radius of the wing is the sameas the radius
of the sphere:

1/2

_ 1o., (7)
ho,s P0\ J So/t-o.28.]

This result is independent of the wall temperature. Where So is the surface

distance from the midline of the leading edge to the center line of the wing

normal to the leading edge, the relation between surface distance normal to the

leading edge and center-line surface distance from the geometric stagnation point

of the sphere nose is given by the relation:

S
_qo _ 0.785

Sc - t + 0.785(1- _) (8)
t cos A
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The values from equation (i) used to normalize the data presented in fig-
ure i0 are as follows:

M_

3.51

4.65
6.8

9.6

3- 72

4.73
6.82
8.95

If PO,N/Po
for hypersonic flow is given by the approximation

PO,N _ sin2

PO

then equation (7) may be simplified somewhat to I

hcf

ho_s

sin _.I/_O,N_0"8/ TO _0.3 u

Vlt--A-_-o) lt_ ) Soft -0.285

and

(9)

(lo)

mo _ 2 _ (ll)

TOjN i + 7 - l(Moo sin o0)2
2

designates the nondimensional cross-flow stagnation-point velocity gradient at

a point on the center line of the wing as a ratio to the velocity gradient at the

stagnation point of a sphere

J_ d(u/ao)/d(s/t) s]°A - [[d(u/ao)k(,/d)- ]

(12)

iFor very high Mach numbers and high angles of attack in flight_ equa-

tion (i0) reduces to

_°_--£-f_ (sin _)l"llt_ A
ho, s _2 So/t - 0.285

z3



The value of _ is expected to be a function of the ratio of the edge

radius of the wing to the distance from the leading edge to the root chord of the

wing measured normal to the leading edge. For disks this ratio is designated

r/R and data indicate that this velocity gradient ratio varies with r/R as in

the following sketch (for air) which utilizes the results already presented for

a sphere plus disk data from references 19 and 23 to 28 and unpublished results

from the Langley 9-inch supersonic tunnel at a Mach number of 3.6.

I.C

.6

&

.4

J , I , I , I , J
.2 .4 .6 .8 1.0

fir

These values of u were assumed to hold for the delta wing with the relation

between the disk dimensions and the wing dimensions, with t = 2r, taken to be

r i i

R 2 So/t - 0.285

Visual Studies of Wings

Surface oil-flow patterns.- The role of nose shape, angle of attack, and

Mach number in determining the flow patterns on the wing are shown in figures ii

to 14. A mixture of oil and carbon black was applied to the wing in various

ways. One way was to coat the wing uniformly with the mixture before the run,

another was to apply the oil mixture in stripes, and the third was to apply the

oil mixture in discrete dots distributed over the wing.

At an angle of attack of 0° as shown in figure ii, the oil and lampblack

patterns are similar for the Mach numbers shown which are 6.8 and 9.6 in air and

approximately ii and 18 in helium. Along the blunt leading edge, the flow pic-

ture is as expected from a swept cylinder. A region of central outflow is
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evident for both the sharp- and blunt-prow models; however, the region influenced

by the nose is smaller in the case of the sharp-prow models. This central out-

flow is a consequence of the mass of air at high induced pressures which enters

the wing over the apex region and is contained by the shock, the wing surface,

and the high pressure induced in the air coming from the leading-edge region. In

this sort of phenomenon, dissipation of this prow effect must occur as this air

moves further downstream and the proportion of the wing surface affected must

diminish. This dissipation can be seen by comparing the 7-diameter wing with the

21-diameter wing. The model with thickness-to-chord ratio (t/cr) of 0.143 is

7 thicknesses long; whereas the model with t/c r = 0.048 is 21 thicknesses long.

Surface flow studies at Mach number of 6.8 and 9.6 in air and at angles of

attack from i0 ° to 45° are presented in figures 12 and 13. The surface shears

indicate an inflow toward the center of the wing at angles of attack of i0 ° to

20 ° . At an angle of attack of 30 ° the flow appears to be straight. With

increasing angle of attack, cross-flow effects start to predominate and the flow

at the surface turns out from the center as shown by the cases for angles of

attack of 40 ° to 45 ° . The surface flow patterns at angle of attack are similar

for Mach numbers of 6.8 and 9.6. Surface flow studies at a Mach number of 18.4

are presented in figure 14(a) for an angle of attack of i0 ° and are similar to

the Mach number 6.8 and 9.6 patterns.

Surface flow studies for the leeward side of the models (figs. 12(c), 13(c),

13(d), and 14(b)) indicate that, at low angles of attack, there is strong prow

influence similar to that shown at an angle of attack of 0° (fig. ii) and at the

higher angles of attack of the tests separated flow existed on the leeward side.

These effects are evident even when the half-cone that is used as a model support

on the thin model covers much of the lee side. Several photographs of the lee-

ward side indicate erratic flow patterns which are a result of oil accumulation

splattering during tunnel shutdown.

Side and top view schlieren photographs.- Figures 15 to 21 present the side

view and top view schlieren photographs of the sharp- and blunt-nose models. The

flow field for the 7-diameter model is representative of the forward one-third of

the 21-diameter model magnified 3 times. In figures 15 and 16, the model is at

an angle of attack of 0° at M = 6.8 and M_ = 9.6 in air and at M_ = Ii.i

and M_ = 18.4 in helium. As would be expected from the predicted insensitivity

of blunt-body shock shapes and detachment distances with Mach number, the shock

shape is very similar at all the Math numbers of the tests, as shown in the side

view schlieren photographs of figure 15. The shock is attached on the sharp-prow

model and detached on the blunt-prow model as expected.

The shock shapes seen in the Mach number 6.8 and 9.6 top view photographs of

the sharp-prow model (fig. 16(a)) are much the same; also the shock shape is not

much different at Mach number 18.4 in helium. The sharp-prow model has a conical-

shaped leading-edge shock. In the case of the blunt-prow model (fig. 16(b)), the

first part of the shock emanating from the nose is the same as that on a sphere.

However, in the region where this nose shock would strike the leading edge there

is an interaction between the bow shock and the leading-edge detached shock char-

acterized by the inflection which can readily be seen in the schlierens. The
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leading edge is thus seen to play a significant part in the flow over the wing.

Also, it can be seen from figure 16(b) that far enough away from the nose of the

blunt-prow model the shock is parallel to the leading edge at _ = 0°.

The shock shapes for the cylindrical-leading-edge models at angles of attack

of lO °, 20 °, 30 ° , and 40 ° , and at Mach numbers of 6.8 and 9.6 are presented in

figures 17 to 20. The side view photographs indicate no appreciable change in

the shock shape due to Mach number. At a Mach number of 9.6 and an angle of

attack of 40 ° (figs. 18(a) and 18(b)) the model nose shock caused the tunnel-wall

boundary layer to separate and engulf approximately one-half of the model. This

tunnel-wall boundary-layer separation is also shown in the plan view photographs

of figure 20. From the top view photographs, it can be seen that a conical

shock existed on the sharp-prow model throughout the angle of attack and Mach

number ranges of the tests. However, the shock shape for the blunt-prow model is

different. If the extent of the nose influence is judged by the inflection in

the leading-edge shock, the blunt nose affects less of the wing length as the

angle of attack increases. Since the spherical nose has a shock of fixed shape,

independent of angle of attack in the range shown, this change in shock shape is

mainly due to changes in the shock around the cylindrical leading edge with angle

of attack. Previously, it was shown that at a sufficient distance from the nose

of the blunt-nose model, the shock is parallel to the leading edge at an angle of

attack of 0°. (See fig. 16(b).) This is also true of the shock at an angle of

attack of lO°. (See figs. 19(b) and 20(b).) At angles of attack of 20 ° and, to

a more noliceable extent, at 30 ° and 40 ° the main-stream flow senses the local

wing span and the leading-edge shock shape becomes conical in nature.

Schlieren studies at an angle of attack of lO ° for a Mach number of 18.4

(helium) are presented in figure 21 and the shock shape is essentially the same
as for the Mach number 6.8 and 9.6 tests in air.

Pressure Distribution on Wing

Pressure distribution at zero angle of attack.- The measured pressure distri-

butions at an angle of attack of 0° on the sharp-nose and blunt-nose models at

Mach numbers 6.8 and 9.6 in air and Mach number 18 in helium are presented in

figure 22. The pressures in terms of free-stream static pressure are plotted

against the nondimensional distance along the wing surface normal to the leading

edge where t is the wing thickness. The short-dashed vertical lines at

So/t = _0.785 indicate the Juncture of the leading edge and slab region. The

value for R_, t shown here is the Reynolds number for the tests based on undis-

turbed free-stream conditions and wing thickness. The parameter L/t is the

station along the leading edge measured from the apex of the slab portion of the

wing. The solid symbols indicate points along the model center line. The decay

in pressure along rays from the apex is evident and most clearly seen in the
center-line data. This is the effect seen in the center-line presentation in

figure 9. Qualitatively, the results in air and helium are similar. The maximum

pressure on the leading edge is a factor of 5 to l0 higher than the pressure on

the slab. The pressure on the slab is relatively constant at a given station,

L/t, on the wing.
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Tn the leading-edge region the pressure data of figure 22 are compared with

empirical curves for essentially infinite cylinders shown by the solid line and

for spheres given by the dashed line. These curves are fits to the hypersonic

sphere and cylinder data discussed in a previous section. Remember that the

L/t = 0 station is a line on a sphere. The leading-edge data for the sharp-prow

models agree well with the correlated cylinder data except perhaps in the leading-

edgeDslab-juncture region. There are significant deviations from this correlated

data for the blunt-prow model data. The correlated sphere data show reasonable

agreement with the blunt-prow model data for the L/t = 0 station. The short-

dashed line in the slab region in figure 22(a), blunt nose, l_o,t = 2.4 × 105 is

from data obtained on sphere-nose rods. The sphere-nose rod data underestimate

the wing center-line data. A detailed comparison of rod data with data from this

wing is contained in figure 13 of reference i.

Pressure distribution at an_le of attack.- The angle-of-attack pressure dis-
tributions for Mach numbers 6.8 and 9.6 in air and Mach number 18 in helium are

presented in figures 23 to 27. The Mach number 9.6 data are presented for two

Reynolds numbers. The pressure data are again plotted against surface distance

normal to the leading edge of the wing. The surface distance is measured from

the mid_line of the cylindrical leading edge. Positive So/t values indicate the

windward surface of the wing and negative so/t , the leeward surface. The iso-

lated cylinder data are again shown by the solid line and the sphere data_ by the

dashed line. Two-dimensional oblique-shock theory, Prandtl-Meyer expansion, and

Newtonian theory for a sharp-leading-edge unswept plate at the same angle of

attack as the wing are presented for reference purposes for the slab region. The

correlated cylinder data give a good approximation to the leading-edge pressures

for both the sharp- and blunt-prow models at Mach number 6.8 for the angles of

attack of the test. (See figs. 23 and 24.) At higher Mach numbers (M_ = 9.6

and M_ = 18) the leading-edge data show fair agreement with the isolated cylinder

data for the sharp-prow model. (See figs. 25 and 27.) For the blunt-prow models

at the higher Mach numbers and the lower angles of attack (_ _ 25o), the measured

pressures are below the correlated cylinder data (figs. 26 and 27); for the higher

angles of attack fair agreement is shown. The leading-edge pressures at L/t = 0

for the blunt-prow model are approximated by correlated sphere data for the Mach

numbers and angles of attack of the tests. The peak in pressure on the leading

edge has disappeared at approximately _ = 40 ° . (See figs. 23(d), 25(i), and

26(i).)

The pressures on the slab portion of the windward side of the wings at Mach

number 6.8 (figs. 23 and 24) are relatively constant throughout the angle-of-

attack range. For ..ngles of attack from 5° to between i0 ° and 20 °, the pressures

are closely predicted by oblique-shock theory. A good approximation of the pres-

sures at higher angles of attack was obtained from Newtonian theory. As discussed

earlier, the pressure gradient induced by the blunt nose which was so pronounced

at an angle of attack of 0° (fig. 22) becomes less severe with angle of attack

and virtually disappears at an s_ugle of attack of 20 ° and greater. Similar

pressure-gradient effects are indicated at a Mach number of 9.6.

At a Mach number of 9.6, oblique-shock theory and Newtonian theory both

underestimate the pressures on the slab portion of the high-pressure side of the
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wings at the low angles of attack. (This lack of agreement is most evident in

figs. 25(a), 25(b), 26(a), and 26(b).) At an angle of attack of lO ° (figs. 25(c)

and 26[c)), oblique-shock theory gives a reasonable prediction of the slab pres-

sures whereas for the angle-of-attack range from 15 ° to 20 ° the pressures are

overestimated by oblique-shock theory and slightly underestimated by Newtonian

theory. For angles of attack greater than 25 °, Newtonlan theory agrees well with

the slab pressures. Figure 27 presents the pressures on the slab portion of the

wings at a Mach number of 18.4 (helium) at angles of attack of 5° and i0 °. The

results are similar to the air tests; however, the pressures in helium are about

four times the air values. The leading-edge pressures for the sharp-prow model

show good agreement with correlated cylinder data which overestimate the pres-

sures on the blunt-prow model. Both Newtonian theory and oblique-shock theory

underestimate the pressures on the slab portion of the wings for the low angles

of attack studied in helium similar to the results obtained in air.

Stanton Number Distribution on Wing

Stanton number distribution at zero angle of attack.- The Stanton number

distribution at an angle of attack of 0° on the models at Mach numbers of 6.8 and

9.6 are presented in figure 28. The vertical scale is the lamlnar-heating corre-

lation parameter, Stanton number times the square root of Reynolds number based

on wing thickness. As shown in figure 28, the data obtained are apparently

laminar. The top and bottom sets of data differ mainly by the Reynolds numbers

at which they were taken. Lees theory (ref. 12) for the heat-transfer distribu-

tion around a cylinder and a sphere by the integral method are shown in the

leading-edge region. This distribution was used with the Fay and Riddell heating

value for the stagnation point of an unswept cylinder (eq. (1)) utilizing as the

initial velocity gradient d(u/a0)/d(s/t ) = 2.19 and the component Mach number

normal to the leading edge. The empirical curve for pressure distribution in the

leadlng-edge region shown in figure 22 was used in performing the integration.

(See appendix.) The heating distribution is actually that shown in figure 4.

Fair agreement with the appropriate theories is shown in the leading-edge region

even though over most of the leading edge the known shock shape is not that to be

expected for the infinite cylinder assumed in theory. (See fig. 16.)

On the slab, laminar strip theory (ref. 8) with zero pressure gradient and a

pressure ratio of unity gives only a rough approximation of the heat transfer.

The flow assumed in the strip-theory calculation is more or less streamwise and,

as was shown in the surface flow studies (fig. ll), the surface flow directions

are far from streamwise over a large portion of the wing. The heat transfer is

higher along the wing center line (solid symbols) than on other parts of the slab

surface at a given value of So/t.

Stanton number distribution at an_le of attack.- Details of the heat-transfer-

coefficient distribution at angle of attack are shown in figures 29 to 31. In

figure 29 are shown the details of the M_ = 6.8 Stanton number distribution

against distance normal to the leading edge at angles of attack of lO ° to 46 ° for

the blunt-nose model. Heat-transfer tests were not made on the sharp-nose model

at M_ = 6.8. As at an angle of attack of 0% fair agreement with the appropriate

theories is shown in the leading-edge region for the angles of attack presented.
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On the slab at an angle of attack of iO ° (fig. 29(a)), the measured Stanton num-

bers are below the prediction of strip theory; however, at an angle of attack of

20 ° (fig. 29(b)) strip theory gives a reasonable approximation of the Stanton

number distribution. Similarly, cross-flow theory agrees well with the measured

data at an angle of attack of 20 ° . This cross-flow theory is obtained directly

from equation (i0) but is plotted against so rather than against sc and

strictly should be compared only with the solid symbols representing data on the

center line of the slab part of the wing. At the higher angles of attack
(figs. 29(c) to 29(e)), there is considerable discrepancy between the data and

the cross-flow theory at the larger values of So/t. This discrepancy is believed

to be due to boundary-layer transition which was discussed in an earlier section

where only the heat transfer along the center line of the wing was considered.

The detailed distribution in figure 29 indicates transition affects a large por-

tion of the wing well off the center line.

The heat-transfer data for the sharp-nose model at a Math number of 9.6 and

various angles of attack are shown in figure 30. The swept cylinder predictions

are somewhat below the measured Stanton numbers throughout the angle-of-attack

range of the tests. At low angles of attack, strip theory overestimates the

Stanton numbers on the slab. At angles of attack from 15 ° to 30 ° the measured

heat-transfer data agree well with strip theory; however, the theory is below

the data at _ = 35 ° . Again, cross-flow theory gives a fair prediction of the

Stanton numbers on the center line of the slab.

Figure 31 presents the heat-transfer-coefficient distribution on the blunt-

nose model at a Mach number of 9.6 and for angles of attack from 2° to 41 °. In

the leading-edge region the agreement between the measured Stanton numbers and

the theories improves with angle of attack. A large peak in heat transfer

(figs. 31(h) and 31(i)) still occurs on the leading edge even though no such peak

is noticeable in the pressure, especially at _ = 41.5 °. (See figs. 26(h) and

26(i).) This peak in heating can be an edge effect and cross-flow theory, if

carried out spanwise for these ratios of edge radius to semispan, would give a

peak near the edge. At an angle of attack of 20 ° (figs. 31(e) and 31(f)), there

is reasonable agreement with strip and cross-flow theories on the slab. At the

higher angles of attack the slab Stanton numbers show fair agreement with cross-

flow theory but are overestimated by strip theory as was true of the sharp-nose

model. At the conditions of the tests at a Mach number of 9.6, no consistent

evidence of boundary-layer transition was obtained.

Aerodynamic Characteristics

The variation of the aerodynamic characteristics with angle of attack is

shown in figures 32 and 33 for Mach number 6.8 and 9.6 tests in air. Because of

tunnel-wall boundary-layer separation (see figs. 18 and 20), no data are pre-

sented at a Mach number of 9.6 for angles of attack greater than 30 ° . No data

were obtained on the 21-diameter models (t/c r = 0.048) below an angle of attack

of 15° because of induced loads caused by exposure of the conical adapter. The

coefficients obtained from two-dimensional shock-expansion theory for a flat

(t/c r = O) and from modified Newtonian theory are presented for comparisonplate

with the test data. The measured lift coefficients for the 7-diameter models
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t/c r = 0.143) show good qualitative agreement with the modified Newtonian theory.

(See figs. 32(a) and 33(a).) Shock-expansion theory gives relatively good agree-

ment with the lift data only at the lower angles of attack. For the 21-diameter

models (t/c r = 0.048) (figs. 32(b) and 33(b)), the measured lift coefficients are

below the shock-expansion predictions and above modified Newtonian estimates and

the results from the 7-diameter model.

Modified Newtonian predictions agree qualitatively with the measured drag

coefficients for both the 7-diameter and the 21-diameter models.

At a Mach number of 6.8, (L/D)ma x occurred on the sharp-prow model at an

angle of attack of approximately 16 ° and on the blunt-prow model at an angle of

attack of approximately 22 °. At a Mach number of 9.6, (L/D)ma x occurred on

the sharp- and blunt-prow models at an angle of attack of about 24 ° .

CONCLUDING R_4ARKS

Results have been presented for a study of slab delta wings of 70 ° sweep at

hypersonic Mach numbers. These wings had cylindrical leading edges and experi-

ments were run with the nose formed by the intersection of the elements of the

cylinders on the wing center llne and with the nose blunted to a tangent sphere.

At the lower angles of attack the heat transfer to the leading edge of this

delta wing was reasonably predicted by cylinder theory by using the component

normal to the leading edge. At the highest angles of attack the heat transfer to

the leading edge of the wing with the blunt nose (for which the highest angles of

attack were obtained) was considerably less than that predicted by yawed cylinder

theory. This drop-off in heat transfer appeared to be connected with an outward

flow of air over the wing at high angles of attack.

The pressure and heat-transfer results obtained on the sphere nose appeared

to be unaffected by the presence of the wing in the range of angle of attack
studied (up to 46o).

For the slab portion of the wing, at low angles of attack, constant-pressure

strip theory was poor in predicting the heat transfer. At angles of attack of

i0 ° to 20°, strip theory gave a reasonable prediction of the test results. From

20 ° to the maximum test angle of attack, cross-flow theory gave good prediction

of the heat transfer on the center line of the wing except for areas of the wing
where transition is suspected to have occurred.

Much of the problem of predicting the heat transfer to delta wings is the

changing flow pattern with angle of attack and simple approaches to predicting
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the heat transfer are shownto be successful if the flow pattern peculiar to the
angle-of-attack range under consideration is taken into account.

Langley ResearchCenter,
National Aeronautics and SpaceAdministration,

Langley Station, Hampton,Va., August 15, 1962.
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APPENDIX

EVALUATIONOFHEATINGDISTRIBUTIONON

TWO-DIMENSIONALBLUNTNOSEBY LEESMETHOD

For a two-dimensional blunt nose immersedin a perfect gas, Lees solution
(ref. 12) maybe written as

h _ _F(s)

_k d(s/t) )0

_F(s) (_)

where

in which

P i u

i PO Ce uoo

f_F(s) _ _/os/tp _ i d
PoU_ Ce

_0 T
Ce =----

To

(_)

T -i

TO
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for air with the Sutherland law

_TOT + 198(°F)
Ce : TO + 198(°F)

An exact solution of equation (A2) generally requires a graphical evalua-

tion of the integral in equation (A2).

If the velocity distribution is assumed to be linear (see figs. 6(c) and

8.(b)), then with s/t : ¢/2

and with Ce assumed to be constant, equation (AI) reduces to

h _ Po (A3)

ho t2]o PA¢ode

If the pressure distribution over the two-dimensional nose is ass_ned to

be represented by an equation of the form

_P = c082¢ + b sin2¢ + c¢ n (A4)
P0

upon substitution of equation (A4) into and the integration of equation (A3)

the following result is obtained:

1 - b) ¢ sin 2¢ - sin2¢ + ¢2 4c n + 1 + b

(4)According to the Newtonian approximation adopted by Lees, b = 7

and c = 0. In the present case, the values of b, c, and n which accurately

represented the pressure distribution on a cylinder for M_ 4 were found to
o

be for 0 <= ¢ <= 90
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b = 0.16

c = -0.00665

n=5

These values are the values used in obtaining the heat-transfer-coefficient

distribution, shown in figure 4, by equation (AS) and by evaluating the integral

in equation (A2) graphically. This pressure distribution is not a strong func-

tion of Mach number; for example, for M _ 3 the following values were found

to give a good fit to the pressure data (compare with fig. 3 after insertion in

eq. (4)) for 0 _ _ _ lO0 °

b = 0.167

c = -0.00268

n=7
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